About equivalent interval colorings of weighted graphs
نویسندگان
چکیده
Given a graph G = (V,E) with strictly positive integer weights ωi on the vertices i ∈ V , a k-interval coloring of G is a function I that assigns an interval I(i) ⊆ {1, · · · , k} of ωi consecutive integers (called colors) to each vertex i ∈ V . If two adjacent vertices x and y have common colors, i.e. I(i)∩ I(j) 6= ∅ for an edge [i, j] in G, then the edge [i, j] is said conflicting. A k-interval coloring without conflicting edges is said legal. The interval coloring problem (ICP) is to determine the smallest integer k, called interval chromatic number of G and denoted χint(G), such that there exists a legal k-interval coloring of G. For a fixed integer k, the k-interval graph coloring problem (k-ICP) is to determine a k-interval coloring of G with a minimum number of conflicting edges. The ICP and k-ICP generalize classical vertex coloring problems where a single color has to be assigned to each vertex (i.e., ωi = 1 for all vertices i ∈ V ). Two k-interval colorings I1 and I2 are said equivalent if there is a permutation π of the integers 1, · · · , k such that l ∈ I1(i) if and only if π(l) ∈ I2(i) for all vertices i ∈ V . As for classical vertex coloring, the efficiency of algorithms that solve the ICP or the k-ICP can be increased by avoiding considering equivalent k-interval colorings. To this purpose, we define and prove a necessary and sufficient condition for the equivalence of two k-interval colorings. We then show how a simple tabu search algorithm for the k-ICP can possibly be improved by forbidding the visit of equivalent solutions.
منابع مشابه
Circular colorings of edge-weighted graphs
The notion of (circular) colorings of edge-weighted graphs is introduced. This notion generalizes the notion of (circular) colorings of graphs, the channel assignment problem, and several other optimization problems. For instance, its restriction to colorings of weighted complete graphs corresponds to the traveling salesman problem (metric case). It also gives rise to a new definition of the ch...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کاملColoring Fuzzy Circular Interval Graphs
Given a graph G with nonnegative node labels w, a multiset of stable sets S1, . . . , Sk ⊆ V (G) such that each vertex v ∈ V (G) is contained in w(v) many of these stable sets is called a weighted coloring. The weighted coloring number χw(G) is the smallest k such that there exist stable sets as above. We provide a polynomial time combinatorial algorithm that computes the weighted coloring numb...
متن کاملHajj Os Theorem for Colorings of Edge-weighted Graphs
Hajj os theorem states that every graph with chromatic number at least k can be obtained from the complete graph K k by a sequence of simple operations such that every intermediate graph also has chromatic number at least k. Here, Hajj os theorem is extended in three slightly diierent ways to colorings and circular colorings of edge-weighted graphs. These extensions shed some new light on the H...
متن کاملColorings and Orientations of Matrices and Graphs
We introduce colorings and orientations of matrices as generalizations of the graph theoretic terms. The permanent per(A[ζ|ξ]) of certain copies A[ζ|ξ] of a matrix A can be expressed as a weighted sum over the orientations or the colorings of A . When applied to incidence matrices of graphs these equations include Alon and Tarsi’s theorem about Eulerian orientations and the existence of list co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 157 شماره
صفحات -
تاریخ انتشار 2009